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In 1909, the word ”wavelet” first appeared in

a thesis by Alfred Haar. Jean Morlet and the
team at the Theoretical Physics Center working
under Alex Grossmann in France first proposed
the modern concept of wavelets, and the methods
of wavelet analysis have been developed mainly
by Y. Meyer and his colleagues. Wavelets are
families of mathematical functions that decom-
pose data into different frequency components.
Derived from multi-resolution analysis, wavelets
enable us to analyze data according to scale.

Fourier analysis also decomposes data into dif-
ferent frequencies. It uses periodic functions such
as sine and cosine. It tells us what frequency our
data have, but it can’t tell us where a particular
frequency accurs. Wavelets are the shifted and di-
lated versions of one single wavelet function. Us-
ing wavelets, we are able to localize a particular
frequency.

We shall study wavelets from multi-resolution
analysis. The function space considered here is
L2(R). Consider a sequence{Vi}i∈Z of closed
subspaces ofL2(R) satisfying the following con-
ditions:

1 Vi ⊂Vi+1

2 ∪i∈ZVi = L2(R)

3 ∩i∈ZVi = {0}

4 f (x) ∈Vi ⇔ f (2x) ∈Vi+1

5 f (x) ∈V0 ⇔ f (x+1) ∈V0

6 ∃φ ∈V0 such that
R ∞
−∞ φ(x)dx 6= 0 and{φ(x−

j)} j∈Z is aRiesz basisof V0

The structure ofV0 determines the structure of
all subsequentVi , and the scaling functionφi gen-
erates a basis for each of the subspaces. Each
time we increase the index of the subspace by

1, we increase the resolution by a factor of 2,
which means more detail is shown in subspace
Vi+1 thanVi . Therefore, for eachVi , there exists
an detail subspaceWi such thatVi+1 = Vi ⊕Wi .
Any function f ∈ L2(R) can be represented by
f = ∑i∈Z wi , wherewi ∈ Wi . The most impor-
tant result from multi-resolution analysis is that
there exists a functionψ ∈ W0 which generates
an orthogonal basis for each subspaceWi , where
R ∞
−∞ ψ(x)dx= 0. We callψ the wavelet generating

function.
Following plots are the Haar scale function, se-

lected basis functions, the Haar wavelet generat-
ing function and selected Haar wavelets.

(a) (b)

(a) shows the Haar scaling function, and(b)
shows the Haar wavelet generating function.

(a) (b)

(a) shows selected basis functions of V1 and V2,
and(b) selected wavelets in W1 and W2

Wavelet analysis is widely used in signal pro-
cessing. Examples of its applications are shown
below.

First consider a functionf plotted below.
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We apply both Fourier decomposition and Haar
Wavelets decomposition to approximate the func-
tion. We evaluate the approximations by looking
at both maximum error and average error which
are defined by following formulas:

maximum error=
maximum difference

average value of function
·100%,

and

average error=
average value of difference
average value of function

·100%.

The upper-left corner shows the original func-
tion, the upper-right corner shows the Fourier ap-
proximation with 50 nonzero terms, the lower-left
corner shows the Fourier approximation with 75
nonzero terms and the lower-right corner shows
the Fourier approximation with 100 nonzero
terms.

From left to right are the wavelet approximations
with 16 and 32 nonzero terms respectively.

Fourier approximations with 50, 75, and 100
terms have maximum errors 486.31%, 389.95%,
and 240.75% respectively, and have average er-
rors 98.84%, 64.60%, and 34.12% respectively.
Wavelet approximations with 16 and 32 terms
have maximum errors 18.08% and 9.18% respec-
tively, and have average errors 2.37% and 1.19%
respectively. It is obvious that wavelets approxi-
mate the function value much better than Fourier
with much less nonzero terms.

One of all other applications of wavelets is sig-
nal denoising. We can think of noise in a signal as
fluctuations with high frequency but a low ampli-
tude. To denoise a signal received, we can decom-
pose the signal into different frequency bands,
and set thresholds to the high frequencies. When
the amplitude for a certain frequency is greater
than the threshold, we pass it, otherwise we block
the frequency or scale it according to different
thresholding methods. Following is an example
of denoising using different thresholding tech-
nique. We can see that the denoised signals pre-
serve the singularities in the original signal. That
is due to the localization of wavelet method.

(a) shows the original signal,(b) shows the noisy
signal, (c) shows the denoised signal using dy-
namic thresholding method, andd shows the de-
noised signal using fixed thresholding method.
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